

 1

Introduction to Stata- A. Chevalier

Lecture 3: The basic of programming- do file and macro

Content of Lecture 3:

-Entering and executing programs
 do file
 program
 ado file
-macros

 2

A] Entering and executing programs

So far we have only worked with stata interactively, that is we were executing
commands one at the time, getting results before moving to the next one. There is
nothing wrong with this approach, but it is not convenient to keep track of what you
have been doing, even if you have opened a log file. Also if modifications are needed,
you will have to start from scratch and try to remember how you got so far in the first
place.
There is a simple way to work with stata that allows you to keep track of your work,
speeds things up and allows you to make changes easily. This involves programming.
But this is not hardcore C++ stuff, programming for the moment will only mean put
together stata commands that you know.

First, to make sure you are not running out of the room, let’s write the simplest
program. You can use any text editor to do that; notepad and LATEX are probably
the most common. There is also an inbuilt editor in stata, which we are going to use
later.

* First method: The do file

Do files are useful as a way to keep track and edit your work

Say you are using notepad
Type:

Display “Hello, world”

Save it as hello.do in your stata working directory

All stata do-files have a do extension and nothing else will do.
Now going back to stata type:

. do hello <- you typed this

. display "hello world" <- Stata typed that
hello world

.
end of do-file
. <- stata awaits next

command

This seems simple enough but it may not have worked for everybody; what might
have gone wrong:

You get a “file hello.do not found” reply
-either hello.do was not saved in your current directory
- you did not save the file with the right do extension

 hello.do is found, but the results are not what you expected.

 3

Hello.do was not saved as an ASCII file, you did not specify ASCII in your
wordprocessor (this is the reason why it is more convenient to use notepad rather than
word)

 Nothing happens
You forgot to press the return key at the end of your do file.
To avoid that, you can finish all your do files with exit, which will make sure that the
last line typed is executed.

*Second method: Interactive –program define- command

program define allows you to create a stata command, it is therefore useful when you
have a set of commands that are going to be used repetitively. Rather than typing the
all set again, just type the program name and all the commands are executed. A
program is defined by a name that cannot be longer than 8 characters. The program
starts with a program define name statement and ends with an “end” statement.

. program define hello <- you type

1. display "hello, world" <- stata display 1,
and you type …

2. end <- program end

. hello <- you type
hello, world <- stata display

You have build your first stata command. You will never want to define a program
interactively, but it is easier to demonstrate this way.
So what’s the difference with the do file:
 You invoke your build stata command like any other stata command
 Your stata command needs to be defined
 The core of the program finishes with end

Problems with program define:

1) redefinition
you may want to change your program and add/alter a line

. program define hello
hello already defined
r(110);

Stata remembers programs defined throughout the session, to redefine a program you
need to drop the previous version.

. program drop hello

. program define hello
1. display "I'll be back"

 4

2. end

. hello
I'll be back

2) reserved name

you cannot define your command as an official stata command, in fact you can but it
executes stata official command rather than yours. To find out which name you
can/cannot use.
. which des
built-in command: describe

. which hello
command hello not found as either built-in or ado-file
r(111);

3) debugging
When debugging large and complicated program, you may want some help relative to
which line causes problem.
Do to so, there is a trace command, that shows all program lines as the command is
executed.
So after your program has crashed;

. set trace on /* turn on trace */

. set more off /* screen keeps on scrolling */

. log using junk,replace /* open log file */

invoke your program

. log close /* close log file */

. set more on /* more on */

. set trace off /* trace off */

So what is that about:
All stata display stops after reaching the bottom of the page and ask for more until
you press a key. As setting the trace on generates a large output, you don’t want to be
pressing a key constantly, so you have the option to stop this more.
You also open a log file, so that you can have a look at the output you generate and
which line generated an error message.
After debugging, close your log file, and set the options back to their initial setup.

4) size matters
There is a limit of 3500 lines to a program. This is not a constraint because I have
never seen a program even remotely close to this limit, second, programs can (and

 5

should) call each other, so you should have a succession of short program rather than
a massive one (it also makes things easier to debug).

5) programs that are defined this way cannot be saved, (I told you this has only
explanation power, and programs are never defined interactively).

* Third method: program define in a do file

To overcome all these problems associated with program define, it is best to define
your program within a do-file

In your editor, type;

capture drop program hello
program define hello

display “hello,again”

end /* end your program */

hello
exit /* end your do file */

Before defining the program, I made sure that program hello did not exit. I could
have typed drop program hello, but this would have crashed if program hello
did not exist in the first place. Capture is a really useful command, when placed at the
beginning of a command line, it will execute the line if possible, otherwise it will go
to the next one , but you should use it thoughtfully.

Then you save your do file and run it

. do hello

. capture program drop hello

.

. program define hello
1.

. display "hello,again"
2.

. end /* end your program */

.

. hello
hello,again

.

. exit

end of do-file

 6

Your program scrolls down and is executed.
An alternative to do hello is to run hello, the only difference, is that your
program does not scroll down before being executed.
You can have programs calling each other, and also do files calling each other.

* the ado file
If the set of commands that you are typing are going to be used regularly, not only
during this session but over time, it may be a good idea to save them as an ado file.
Ado stands for automatically loaded do file. An ado file is a stata command that you
create yourself; they work pretty much the same way as do files.
Going back to you editor, delete the line hello (asking for the program hello to be
executed) and save the program hello.do as hello.ado.

In stata,
. program drop hello <-just to show you, hello is not loaded
. hello
hello world

Like any other program, ado files stay in memory unless overwritten, but this time,
stata does not let you know that you are not updating, when you thought you were.
So after changing an ado file, type discard at your stata prompt before running
your ado file.

If an adofile is going to be used regularly for different projects, it is best to save it on
your personal ado space; C:\ado\personal (see lecture 1)

* There is another type of file that you may have to use from time to time.
(Dictionary)
Datasets don’t always come up in stata format, nor in a format that is easy for stata to
read with the infile command (see lecture 1). They may come in a really complex
format where each observation in on one line but all variables are collated. In such a
case you need to write a dictionary, basically describing where the variable splits are.

AMC Concord 4099 2232.5112930
AMC Pacer 4749 1733.0113350
AMC Spirit 3799 223.0122640
Buick Century 4816 2034.5163250
Buick Electra 7827 1544.0204080
Buick LeSabre 5788 1834.0213670
Buick Opel 4453 263.0102230
Buick Regal 5189 2032.0163280
Buick Riviera 10372 1633.5173880
Buick Skylark 4082 1933.5133400
Cad. Deville 11385 1434.0204330
Cad. Eldorado 14500 1423.5163900

Dictionaries are do files with a different extension, where you describe the data. Look
for help

 7

In the above example, we will write something like:

Dictionary using cars.raw {
_column(1) str19 mandm %19s “make and model”
_column (20) int price “Price”
_column(28) int mpg “mpg”
….

Working with do files makes your work easier to replicate. So organise your do file
in a way that makes things easier for you to go back to your analysis, this is a matter
of personal taste. You can add comments in your dofile to help yourself. Any line
starting with a * is not executed nor are all the lines between /* and */.

At first, you may think that do files, just prevent you from doing simple calculations,
for example, normalising a variable, making some prediction after a regression, where
in the interactive mode, you will just have enter the value yourself.

Normalise a variable:
In interactive mode:

. su mpg

Variable | Obs Mean Std. Dev. Min Max
-------------+---

mpg | 74 21.2973 5.785503 12 41

. gen nmpg=mpg-21.2973

In general, it is easier to do:

. su mpg

Variable | Obs Mean Std. Dev. Min Max
-------------+---

mpg | 74 21.2973 5.785503 12 41

. gen nmpg2=mpg-r(mean)

So that if your sample changes, you do not have to change your do file.

I can check that the two methods gave the same solution:
. su nmpg nmpg2

Variable | Obs Mean Std. Dev. Min Max
-------------+---

nmpg | 74 -2.73e-06 5.785503 -9.2973 19.7027
nmpg2 | 74 -4.03e-08 5.785503 -9.297297 19.7027

There is nothing magical to this r(mean). Most of stata commands leave behind them
a trail of information that can be used easily. This information can take the form of
strings, numbers or matrices and is a great tool for programming but also for
constructing output tables.

 8

To find out what exists after each command producing an output you can type:
return list
After each estimation, there is also stack of information in stata memory; try:
estimates list

This information disappears from stata memory as soon as you type another
command, so if you want to use them in a more permanent manner, just extract it and
rename it.
. su mpg

Variable | Obs Mean Std. Dev. Min Max
-------------+---

mpg | 74 21.2973 5.785503 12 41

. return list

scalars:
r(N) = 74

r(sum_w) = 74
r(mean) = 21.2972972972973
r(Var) = 33.47204738985561
r(sd) = 5.785503209735141

r(min) = 12
r(max) = 41
r(sum) = 1576

. reg mpg weight gratio

Source | SS df MS Number of obs = 74
-------------+------------------------------ F(2, 71) = 66.38

Model | 1592.05392 2 796.026958 Prob > F = 0.0000
Residual | 851.405544 71 11.9916274 R-squared = 0.6516

-------------+------------------------------ Adj R-squared = 0.6417
Total | 2443.45946 73 33.4720474 Root MSE = 3.4629

--
mpg | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+--
weight | -.0059643 .0008013 -7.44 0.000 -.0075621 -.0043665
gratio | .0994882 1.364894 0.07 0.942 -2.622033 2.82101
_cons | 39.00643 6.169955 6.32 0.000 26.70389 51.30897

--

. estimate list

scalars:
e(N) = 74

e(df_m) = 2
e(df_r) = 71

e(F) = 66.38189565945015
e(r2) = .6515573275289056

e(rmse) = 3.462892920968853
e(mss) = 1592.05391533063
e(rss) = 851.4055441288298

e(r2_a) = .6417420409804241
e(ll) = -195.3859199192182

e(ll_0) = -234.3943376482347

macros:
e(depvar) : "mpg"

e(cmd) : "regress"
e(predict) : "regres_p"

 9

e(model) : "ols"

matrices:
e(b) : 1 x 3
e(V) : 3 x 3

functions:
e(sample)

 10

B] macros

There are two types of macro, local and global, which in most cases have similar
usage. For the moment I will concentrate on local macros, but all that is said here is
valid for global macros.

Macros are shorthand for one thing standing for another.

For example: I usually put all my independent variables in a macro, so that I’m sure
that my specification remains the same throughout the analysis, and if I want to
change it, I need to change only 1 line in my do file and not all the regressions.
Macros not only save time but reduce the chance of mistakes…
In a do file, I create a local xlist containing all my regressors, then type my regression:
note the peculiar notation to call back your local macro `name’ (leading left quote,
trailing right quote). Most of the problems you will encountered when using macros
have to do with this notation!!!!

. local xlist " weight length gratio foreign"

.

. reg mpg `xlist'

Source | SS df MS Number of obs = 74
-------------+------------------------------ F(4, 69) = 34.08

Model | 1622.35839 4 405.589597 Prob > F = 0.0000
Residual | 821.10107 69 11.9000155 R-squared = 0.6640

-------------+------------------------------ Adj R-squared = 0.6445
Total | 2443.45946 73 33.4720474 Root MSE = 3.4496

--
mpg | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+--
weight | -.0036863 .001777 -2.07 0.042 -.0072313 -.0001413
length | -.0839138 .0564141 -1.49 0.141 -.1964569 .0286293
gratio | .673715 1.468161 0.46 0.648 -2.255186 3.602616
foreign | -.6496837 .9394243 -0.69 0.492 -2.523784 1.224416
_cons | 46.37753 8.161182 5.68 0.000 30.09641 62.65864

--

Comments: in fact a local macro can be defined as:

. local xlist " weight length gratio foreign"
or
. local xlist = " weight length gratio foreign"

The two are equivalent, but with the = sign, the statement made in the macro cannot
be longer than 80 characters, without the = it is up to 18.632. Thus I prefer not
putting an equal sign (rather than bang my head on the wall, wondering why half of
my macro is not included…)

In fact a macro does not have to be defined to be called. If I do not defined the macro
varlist, I can still use it in a stata statement, it is just empty.

. reg mpg `varlist'

Source | SS df MS Number of obs = 74
-------------+------------------------------ F(0, 73) = 0.00

Model | 0.00 0 . Prob > F = .
Residual | 2443.45946 73 33.4720474 R-squared = 0.0000

-------------+------------------------------ Adj R-squared = 0.0000
Total | 2443.45946 73 33.4720474 Root MSE = 5.7855

 11

--
mpg | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+--
_cons | 21.2973 .6725511 31.67 0.000 19.9569 22.63769

--

The local `varlist’ is empty, hence an expression using `varlist’ will not return an error
message. This feature is desirable (in programming) but can sometime lead into
problems of its own

Macros are not limited to containing a list of variables, in fact they can contain
anything.

- list of variables
as seen above

- Statement:
local if "if (hours>=0 | hours ~=.) & week>0 and earn>0 &
earn/weeks>100"

sum xxx `if’
tab xxx`if’
reg yyy xxx `if’

Once again this makes do files clearer and reduces the risk of mistakes

- Numbers
local i=1
 note that here I put the = sign and do not put “”.

- Scalars

Regression excluding the 5th and 95th percentile.

quietly su lny, detail

local lo=r(p5)

local hi=r(p95)

regress lny `xlist’ if `lo’<lny & lny<`hi’

Macros can have the same name than a variable and stata will not be confused
(although you may). Local and global macro may also have the same name (but this
time you are really asking for trouble). All that is possible because of the specific
notation of macros.
The rules for naming macros are slightly different than for variables:
-locals can only be 7 characters long.
-locals can be named numbers (this is mostly used in programming (see lecture 5) so
unless you are absolutely sure what you are doing, don’t name a local by a number
without a reason).

 12

In programs and do files, the macros are local or, if you prefer private. No other
program or do files can change them or in fact know that they exist.

This is quite tricky, and can get your mind close to insanity for a while, but look at the
following example extracted from a do file;

local gender “sex”

program define truc
su `gender’ if crash==1

end

truc

This do file will work but not do what you expect because the local `gender’ is
defined outside the program truc. Applying our rule, the program truc has no idea
that the local gender has been defined, and within truc, `gender’ is empty.

We will see in lecture 5 how to parse information to programs, but in this simple case,
we only need to define the local `gender’ within the program truc rather than outside.

capture program drop truc
program define truc

local gender “sex”
su `gender’ if crash==1

end

truc

Replicate this program using the auto dataset, replace crash by foreign and sex by
mpg.

Then, what do you think of this do file:

capture program drop truc
program define truc

local gender “sex”
su `gender’ if crash==1

end

truc
su `gender’

This time stata has no idea what `gender’ is outside the truc program, so `gender’
would have to be defined twice inside and outside the program truc.
To avoid this kind of problem, stata also provide another type of macro, that are not
private and remain accessible and changeable everywhere. This type of macro is
called global

 13

Globals are defined in a similar way as locals, but can be 8 characters long and cannot
be a number. When calling back a global, you use $macroname rather than
`localname’.

global gender “sex”

capture program drop truc
program define truc

su $gender if crash==1
end

truc
su $gender

However, you should rarely have to use globals, as their contents may be changed by
other programs without you noticing (this is because they are not private to a specific
program).

global gender “sex”

capture program drop truc
program define truc

su $gender if crash==1
end

truc
do truc2 <- note new line
su $gender

It is possible that in truc2 I have a line saying global gender “length”, which means
that without studying truc2, I have no way of knowing whether su $gender is going to
be executed as;
su sex or su length

* Digression on parsing

Whenever, you type some command, this information has to be translated into
things that stata does understand, this is what parsing is about, and that tends to be
quite technical.
As stated previously, do not define locals by a number unless you are confident in
what you are doing. This is because Stata automatically defines the local `1’, `2’, …
when it enters a program or a do file. All you need to know for the moment is that
stata associates locals to variables typed by the user. So if you type:

list age sex educ lny /* I could have use any command, it is always true */
stata fills the local macros 1, 2, 3 and 4 with respectively age sex educ lny
/* remember, local macros can be called by numbers */

If you type:

do myfile alpha

 14

Macro `1’ will contain alpha and `2’ and all the remaining macros will remain empty

If now you type
do myfile beta alpha

Macro `1’ will contain beta and `2’ contains alpha

In this way you can pass argument to your do file and programs. We can check that
with the following program:

capture program drop tester
program define tester

display "local 1 contains :`1' "
display "local 2 contains :`2' "
display "local 3 contains :`3' "
display "local 4 contains :`4' "

end

tester alpha
tester beta alpha

stata recognises that arguments are separated by space or within “ “
Try:
tester abc?@*&£ 2+2
tester “this is a stupidly long argument”

We will see more comprehensive ways of parsing information to a stata program in
Lecture 5.

Occasionally, you may experience the following problem. Your macro name follows
a \. This confuses stata and the ` is not read, leading a to an error message. The
solution is to enter \\ or `/’, see below:
use hdno persno using "F:\LICENSE DATA\L.F.S\child
vars\\`r'`y'q`q'dpchvars.dta"
or
use hdno persno using "F:\LICENSE DATA\L.F.S\child
vars`\’`r'`y'q`q'dpchvars.dta"

What the difference between macro and scalar?

Scalars are used to store numbers. So you can type scalar x= 3 display x
or local x =3 display `x’ and get the same answer. The difference comes
from the precision, macro store numbers with an accuracy of 12 digits, while scalar
uses 16 digits.
In most cases, locals are fine, but when you have statement like `x’=`y’
approximation errors may be playing trick with you and you may adopt scalars.

	Introduction to Stata- A. Chevalier
	Lecture 3: The basic of programming- do file and macro

